1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
//! `GraphMap<N, E, Ty>` is a graph datastructure where node values are mapping
//! keys.

use std::cmp::Ordering;
use std::hash::{self, Hash};
use std::iter::{
    Cloned,
    DoubleEndedIterator,
};
use std::slice::{
    Iter,
};
use std::fmt;
use std::ops::{Index, IndexMut, Deref};
use std::iter::FromIterator;
use std::marker::PhantomData;
use ordermap::OrderMap;
use ordermap::{
    Iter as OrderMapIter, IterMut as OrderMapIterMut
};
use ordermap::Keys;

use {
    EdgeType,
    Directed,
    Undirected,
    Direction,
    Incoming,
    Outgoing,
};

use IntoWeightedEdge;
use visit::{IntoNodeIdentifiers, NodeCount, IntoNodeReferences, NodeIndexable};
use visit::{NodeCompactIndexable, IntoEdgeReferences, IntoEdges};
use graph::Graph;
use graph::node_index;

/// A `GraphMap` with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
pub type UnGraphMap<N, E> = GraphMap<N, E, Undirected>;
/// A `GraphMap` with directed edges.
///
/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
/// *1*.
pub type DiGraphMap<N, E> = GraphMap<N, E, Directed>;

/// `GraphMap<N, E, Ty>` is a graph datastructure using an associative array
/// of its node weights `N`.
///
/// It uses an combined adjacency list and sparse adjacency matrix
/// representation, using **O(|V| + |E|)** space, and allows testing for edge
/// existance in constant time.
///
/// `GraphMap` is parameterized over:
///
/// - Associated data `N` for nodes and `E` for edges, called *weights*.
/// - The node weight `N` must implement `Copy` and will be used as node
/// identifier, duplicated into several places in the data structure.
/// It must be suitable as a hash table key (implementing `Eq + Hash`).
/// The node type must also implement `Ord` so that the implementation can
/// order the pair (`a`, `b`) for an edge connecting any two nodes `a` and `b`.
/// - `E` can be of arbitrary type.
/// - Edge type `Ty` that determines whether the graph edges are directed or
/// undirected.
///
/// You can use the type aliases `UnGraphMap` and `DiGraphMap` for convenience.
///
/// `GraphMap` does not allow parallel edges, but self loops are allowed.
///
/// Depends on crate feature `graphmap` (default).
#[derive(Clone)]
pub struct GraphMap<N, E, Ty> {
    nodes: OrderMap<N, Vec<(N, CompactDirection)>>,
    edges: OrderMap<(N, N), E>,
    ty: PhantomData<Ty>,
}

impl<N: Eq + Hash + fmt::Debug, E: fmt::Debug, Ty: EdgeType> fmt::Debug for GraphMap<N, E, Ty> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.nodes.fmt(f)
    }
}

/// A trait group for `GraphMap`'s node identifier.
pub trait NodeTrait : Copy + Ord + Hash {}
impl<N> NodeTrait for N where N: Copy + Ord + Hash {}

// non-repr(usize) version of Direction
#[derive(Copy, Clone, Debug, PartialEq)]
enum CompactDirection {
    Outgoing,
    Incoming,
}

impl From<Direction> for CompactDirection {
    fn from(d: Direction) -> Self {
        match d {
            Outgoing => CompactDirection::Outgoing,
            Incoming => CompactDirection::Incoming,
        }
    }
}

impl PartialEq<Direction> for CompactDirection {
    fn eq(&self, rhs: &Direction) -> bool {
        (*self as usize) == (*rhs as usize)
    }
}

impl<N, E, Ty> GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    /// Create a new `GraphMap`
    pub fn new() -> Self {
        Self::default()
    }

    /// Create a new `GraphMap` with estimated capacity.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self {
        GraphMap {
            nodes: OrderMap::with_capacity(nodes),
            edges: OrderMap::with_capacity(edges),
            ty: PhantomData,
        }
    }

    /// Return the current node and edge capacity of the graph.
    pub fn capacity(&self) -> (usize, usize) {
        (self.nodes.capacity(), self.edges.capacity())
    }

    /// Use their natual order to map the node pair (a, b) to a canonical edge id.
    #[inline]
    fn edge_key(a: N, b: N) -> (N, N) {
        if Ty::is_directed() {
            (a, b)
        } else {
            if a <= b { (a, b) } else { (b, a) }
        }
    }

    /// Whether the graph has directed edges.
    pub fn is_directed(&self) -> bool {
        Ty::is_directed()
    }

    /// Create a new `GraphMap` from an iterable of edges.
    ///
    /// Node values are taken directly from the list.
    /// Edge weights `E` may either be specified in the list,
    /// or they are filled with default values.
    ///
    /// Nodes are inserted automatically to match the edges.
    ///
    /// ```
    /// use petgraph::graphmap::UnGraphMap;
    ///
    /// // Create a new undirected GraphMap.
    /// // Use a type hint to have `()` be the edge weight type.
    /// let gr = UnGraphMap::<_, ()>::from_edges(&[
    ///     (0, 1), (0, 2), (0, 3),
    ///     (1, 2), (1, 3),
    ///     (2, 3),
    /// ]);
    /// ```
    pub fn from_edges<I>(iterable: I) -> Self
        where I: IntoIterator,
              I::Item: IntoWeightedEdge<E, NodeId=N>
    {
        Self::from_iter(iterable)
    }

    /// Return the number of nodes in the graph.
    pub fn node_count(&self) -> usize {
        self.nodes.len()
    }

    /// Return the number of edges in the graph.
    pub fn edge_count(&self) -> usize {
        self.edges.len()
    }

    /// Remove all nodes and edges
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.edges.clear();
    }

    /// Add node `n` to the graph.
    pub fn add_node(&mut self, n: N) -> N {
        self.nodes.entry(n).or_insert(Vec::new());
        n
    }

    /// Return `true` if node `n` was removed.
    pub fn remove_node(&mut self, n: N) -> bool {
        let links = match self.nodes.swap_remove(&n) {
            None => return false,
            Some(sus) => sus,
        };
        for (succ, _) in links {
            // remove all successor links
            self.remove_single_edge(&succ, &n, Incoming);
            // Remove all edge values
            self.edges.swap_remove(&Self::edge_key(n, succ));
        }
        true
    }

    /// Return `true` if the node is contained in the graph.
    pub fn contains_node(&self, n: N) -> bool {
        self.nodes.contains_key(&n)
    }

    /// Add an edge connecting `a` and `b` to the graph, with associated
    /// data `weight`. For a directed graph, the edge is directed from `a`
    /// to `b`.
    ///
    /// Inserts nodes `a` and/or `b` if they aren't already part of the graph.
    ///
    /// Return `None` if the edge did not previously exist, otherwise,
    /// the associated data is updated and the old value is returned
    /// as `Some(old_weight)`.
    ///
    /// ```
    /// // Create a GraphMap with directed edges, and add one edge to it
    /// use petgraph::graphmap::DiGraphMap;
    ///
    /// let mut g = DiGraphMap::new();
    /// g.add_edge("x", "y", -1);
    /// assert_eq!(g.node_count(), 2);
    /// assert_eq!(g.edge_count(), 1);
    /// assert!(g.contains_edge("x", "y"));
    /// assert!(!g.contains_edge("y", "x"));
    /// ```
    pub fn add_edge(&mut self, a: N, b: N, weight: E) -> Option<E> {
        if let old @ Some(_) = self.edges.insert(Self::edge_key(a, b), weight) {
            old
        } else {
            // insert in the adjacency list if it's a new edge
            self.nodes.entry(a)
                      .or_insert_with(|| Vec::with_capacity(1))
                      .push((b, CompactDirection::Outgoing));
            if a != b {
                // self loops don't have the Incoming entry
                self.nodes.entry(b)
                          .or_insert_with(|| Vec::with_capacity(1))
                          .push((a, CompactDirection::Incoming));
            }
            None
        }
    }

    /// Remove edge relation from a to b
    ///
    /// Return `true` if it did exist.
    fn remove_single_edge(&mut self, a: &N, b: &N, dir: Direction) -> bool {
        match self.nodes.get_mut(a) {
            None => false,
            Some(sus) => {
                if Ty::is_directed() {
                    match sus.iter().position(|elt| elt == &(*b, CompactDirection::from(dir))) {
                        Some(index) => { sus.swap_remove(index); true }
                        None => false,
                    }
                } else {
                    match sus.iter().position(|elt| &elt.0 == b) {
                        Some(index) => { sus.swap_remove(index); true }
                        None => false,
                    }
                }
            }
        }
    }

    /// Remove edge from `a` to `b` from the graph and return the edge weight.
    ///
    /// Return `None` if the edge didn't exist.
    ///
    /// ```
    /// // Create a GraphMap with undirected edges, and add and remove an edge.
    /// use petgraph::graphmap::UnGraphMap;
    ///
    /// let mut g = UnGraphMap::new();
    /// g.add_edge("x", "y", -1);
    ///
    /// let edge_data = g.remove_edge("y", "x");
    /// assert_eq!(edge_data, Some(-1));
    /// assert_eq!(g.edge_count(), 0);
    /// ```
    pub fn remove_edge(&mut self, a: N, b: N) -> Option<E> {
        let exist1 = self.remove_single_edge(&a, &b, Outgoing);
        let exist2 = if a != b {
            self.remove_single_edge(&b, &a, Incoming)
        } else { exist1 };
        let weight = self.edges.remove(&Self::edge_key(a, b));
        debug_assert!(exist1 == exist2 && exist1 == weight.is_some());
        weight
    }

    /// Return `true` if the edge connecting `a` with `b` is contained in the graph.
    pub fn contains_edge(&self, a: N, b: N) -> bool {
        self.edges.contains_key(&Self::edge_key(a, b))
    }

    /// Return an iterator over the nodes of the graph.
    ///
    /// Iterator element type is `N`.
    pub fn nodes(&self) -> Nodes<N> {
        Nodes{iter: self.nodes.keys().cloned()}
    }

    /// Return an iterator of all nodes with an edge starting from `a`.
    ///
    /// - `Directed`: Outgoing edges from `a`.
    /// - `Undirected`: All edges from or to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `N`.
    pub fn neighbors(&self, a: N) -> Neighbors<N, Ty> {
        Neighbors {
            iter: match self.nodes.get(&a) {
                Some(neigh) => neigh.iter(),
                None => [].iter(),
            },
            ty: self.ty,
        }
    }

    /// Return an iterator of all neighbors that have an edge between them and
    /// `a`, in the specified direction.
    /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
    ///
    /// - `Directed`, `Outgoing`: All edges from `a`.
    /// - `Directed`, `Incoming`: All edges to `a`.
    /// - `Undirected`: All edges from or to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `N`.
    pub fn neighbors_directed(&self, a: N, dir: Direction)
        -> NeighborsDirected<N, Ty>
    {
        NeighborsDirected {
            iter: match self.nodes.get(&a) {
                Some(neigh) => neigh.iter(),
                None => [].iter(),
            },
            dir: dir,
            ty: self.ty,
        }
    }

    /// Return an iterator of target nodes with an edge starting from `a`,
    /// paired with their respective edge weights.
    ///
    /// - `Directed`: Outgoing edges from `a`.
    /// - `Undirected`: All edges from or to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.<br>
    /// Iterator element type is `(N, &E)`.
    pub fn edges(&self, from: N) -> Edges<N, E, Ty> {
        Edges {
            from: from,
            iter: self.neighbors(from),
            edges: &self.edges,
        }
    }

    /// Return a reference to the edge weight connecting `a` with `b`, or
    /// `None` if the edge does not exist in the graph.
    pub fn edge_weight(&self, a: N, b: N) -> Option<&E> {
        self.edges.get(&Self::edge_key(a, b))
    }

    /// Return a mutable reference to the edge weight connecting `a` with `b`, or
    /// `None` if the edge does not exist in the graph.
    pub fn edge_weight_mut(&mut self, a: N, b: N) -> Option<&mut E> {
        self.edges.get_mut(&Self::edge_key(a, b))
    }

    /// Return an iterator over all edges of the graph with their weight in arbitrary order.
    ///
    /// Iterator element type is `(N, N, &E)`
    pub fn all_edges(&self) -> AllEdges<N, E, Ty> {
        AllEdges {
            inner: self.edges.iter(),
            ty: self.ty,
        }
    }

    /// Return an iterator over all edges of the graph in arbitrary order, with a mutable reference
    /// to their weight.
    ///
    /// Iterator element type is `(N, N, &mut E)`
    pub fn all_edges_mut(&mut self) -> AllEdgesMut<N, E, Ty> {
        AllEdgesMut {
            inner: self.edges.iter_mut(),
            ty: self.ty,
        }
    }

    /// Return a `Graph` that corresponds to this `GraphMap`.
    ///
    /// 1. Note that node and edge indices in the `Graph` have nothing in common
    ///    with the `GraphMap`s node weights `N`. The node weights `N` are used as
    ///    node weights in the resulting `Graph`, too.
    /// 2. Note that the index type is user-chosen.
    ///
    /// Computes in **O(|V| + |E|)** time (average).
    ///
    /// **Panics** if the number of nodes or edges does not fit with
    /// the resulting graph's index type.
    pub fn into_graph<Ix>(self) -> Graph<N, E, Ty, Ix>
        where Ix: ::graph::IndexType,
    {
        // assuming two successive iterations of the same hashmap produce the same order
        let mut gr = Graph::with_capacity(self.node_count(), self.edge_count());
        for (&node, _) in &self.nodes {
            gr.add_node(node);
        }
        for ((a, b), edge_weight) in self.edges {
            let (ai, _, _) = self.nodes.get_full(&a).unwrap();
            let (bi, _, _) = self.nodes.get_full(&b).unwrap();
            gr.add_edge(node_index(ai), node_index(bi), edge_weight);
        }
        gr
    }
}

/// Create a new `GraphMap` from an iterable of edges.
impl<N, E, Ty, Item> FromIterator<Item> for GraphMap<N, E, Ty>
    where Item: IntoWeightedEdge<E, NodeId=N>,
          N: NodeTrait,
          Ty: EdgeType,
{
    fn from_iter<I>(iterable: I) -> Self
        where I: IntoIterator<Item=Item>,
    {
        let iter = iterable.into_iter();
        let (low, _) = iter.size_hint();
        let mut g = Self::with_capacity(0, low);
        g.extend(iter);
        g
    }
}

/// Extend the graph from an iterable of edges.
///
/// Nodes are inserted automatically to match the edges.
impl<N, E, Ty, Item> Extend<Item> for GraphMap<N, E, Ty>
    where Item: IntoWeightedEdge<E, NodeId=N>,
          N: NodeTrait,
          Ty: EdgeType,
{
    fn extend<I>(&mut self, iterable: I)
        where I: IntoIterator<Item=Item>,
    {
        let iter = iterable.into_iter();
        let (low, _) = iter.size_hint();
        self.edges.reserve(low);

        for elt in iter {
            let (source, target, weight) = elt.into_weighted_edge();
            self.add_edge(source, target, weight);
        }
    }
}

macro_rules! iterator_wrap {
    ($name: ident <$($typarm:tt),*> where { $($bounds: tt)* }
     item: $item: ty,
     iter: $iter: ty,
     ) => (
        pub struct $name <$($typarm),*> where $($bounds)* {
            iter: $iter,
        }
        impl<$($typarm),*> Iterator for $name <$($typarm),*>
            where $($bounds)*
        {
            type Item = $item;
            #[inline]
            fn next(&mut self) -> Option<Self::Item> {
                self.iter.next()
            }

            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.iter.size_hint()
            }
        }
    );
}

iterator_wrap! {
    Nodes <'a, N> where { N: 'a + NodeTrait }
    item: N,
    iter: Cloned<Keys<'a, N, Vec<(N, CompactDirection)>>>,
}

pub struct Neighbors<'a, N, Ty = Undirected>
    where N: 'a,
          Ty: EdgeType,
{
    iter: Iter<'a, (N, CompactDirection)>,
    ty: PhantomData<Ty>,
}

impl<'a, N, Ty> Iterator for Neighbors<'a, N, Ty>
    where N: NodeTrait,
          Ty: EdgeType
{
    type Item = N;
    fn next(&mut self) -> Option<N> {
        if Ty::is_directed() {
            (&mut self.iter)
                .filter_map(|&(n, dir)| if dir == Outgoing {
                    Some(n)
                } else { None })
                .next()
        } else {
            self.iter.next().map(|&(n, _)| n)
        }
    }
}

pub struct NeighborsDirected<'a, N, Ty>
    where N: 'a,
          Ty: EdgeType,
{
    iter: Iter<'a, (N, CompactDirection)>,
    dir: Direction,
    ty: PhantomData<Ty>,
}

impl<'a, N, Ty> Iterator for NeighborsDirected<'a, N, Ty>
    where N: NodeTrait,
          Ty: EdgeType
{
    type Item = N;
    fn next(&mut self) -> Option<N> {
        if Ty::is_directed() {
            let self_dir = self.dir;
            (&mut self.iter)
                .filter_map(move |&(n, dir)| if dir == self_dir {
                    Some(n)
                } else { None })
                .next()
        } else {
            self.iter.next().map(|&(n, _)| n)
        }
    }
}

pub struct Edges<'a, N, E: 'a, Ty>
    where N: 'a + NodeTrait,
          Ty: EdgeType
{
    from: N,
    edges: &'a OrderMap<(N, N), E>,
    iter: Neighbors<'a, N, Ty>,
}

impl<'a, N, E, Ty> Iterator for Edges<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    type Item = (N, N, &'a E);
    fn next(&mut self) -> Option<Self::Item> {
        match self.iter.next() {
            None => None,
            Some(b) => {
                let a = self.from;
                match self.edges.get(&GraphMap::<N, E, Ty>::edge_key(a, b)) {
                    None => unreachable!(),
                    Some(edge) => {
                        Some((a, b, edge))
                    }
                }
            }
        }
    }
}

impl<'a, N: 'a, E: 'a, Ty> IntoEdgeReferences for &'a GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    type EdgeRef = (N, N, &'a E);
    type EdgeReferences = AllEdges<'a, N, E, Ty>;
    fn edge_references(self) -> Self::EdgeReferences {
        self.all_edges()
    }
}

pub struct AllEdges<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
    inner: OrderMapIter<'a, (N, N), E>,
    ty: PhantomData<Ty>,
}

impl<'a, N, E, Ty> Iterator for AllEdges<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    type Item = (N, N, &'a E);
    fn next(&mut self) -> Option<Self::Item>
    {
        match self.inner.next() {
            None => None,
            Some((&(a, b), v)) => Some((a, b, v))
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }

    fn count(self) -> usize {
        self.inner.count()
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.inner.nth(n).map(|(&(n1, n2), weight)| (n1, n2, weight))
    }

    fn last(self) -> Option<Self::Item> {
        self.inner.last().map(|(&(n1, n2), weight)| (n1, n2, weight))
    }
}

impl<'a, N, E, Ty> DoubleEndedIterator for AllEdges<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|(&(n1, n2), weight)| (n1, n2, weight))
    }
}

pub struct AllEdgesMut<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
    inner: OrderMapIterMut<'a, (N, N), E>,
    ty: PhantomData<Ty>,
}

impl<'a, N, E, Ty> Iterator for AllEdgesMut<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    type Item = (N, N, &'a mut E);
    fn next(&mut self) -> Option<Self::Item> {
        self.inner.next().map(|(&(n1, n2), weight)| (n1, n2, weight))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }

    fn count(self) -> usize {
        self.inner.count()
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.inner.nth(n).map(|(&(n1, n2), weight)| (n1, n2, weight))
    }

    fn last(self) -> Option<Self::Item> {
        self.inner.last().map(|(&(n1, n2), weight)| (n1, n2, weight))
    }
}

impl<'a, N, E, Ty> DoubleEndedIterator for AllEdgesMut<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.inner.next_back().map(|(&(n1, n2), weight)| (n1, n2, weight))
    }
}

impl<'a, N: 'a, E: 'a, Ty> IntoEdges for &'a GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    type Edges = Edges<'a, N, E, Ty>;
    fn edges(self, a: Self::NodeId) -> Self::Edges {
        self.edges(a)
    }
}


/// Index `GraphMap` by node pairs to access edge weights.
impl<N, E, Ty> Index<(N, N)> for GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    type Output = E;
    fn index(&self, index: (N, N)) -> &E
    {
        let index = Self::edge_key(index.0, index.1);
        self.edge_weight(index.0, index.1).expect("GraphMap::index: no such edge")
    }
}

/// Index `GraphMap` by node pairs to access edge weights.
impl<N, E, Ty> IndexMut<(N, N)> for GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    fn index_mut(&mut self, index: (N, N)) -> &mut E {
        let index = Self::edge_key(index.0, index.1);
        self.edge_weight_mut(index.0, index.1).expect("GraphMap::index: no such edge")
    }
}

/// Create a new empty `GraphMap`.
impl<N, E, Ty> Default for GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    fn default() -> Self { GraphMap::with_capacity(0, 0) }
}

/// A reference that is hashed and compared by its pointer value.
///
/// `Ptr` is used for certain configurations of `GraphMap`,
/// in particular in the combination where the node type for
/// `GraphMap` is something of type for example `Ptr(&Cell<T>)`,
/// with the `Cell<T>` being `TypedArena` allocated.
pub struct Ptr<'b, T: 'b>(pub &'b T);

impl<'b, T> Copy for Ptr<'b, T> {}
impl<'b, T> Clone for Ptr<'b, T>
{
    fn clone(&self) -> Self { *self }
}


fn ptr_eq<T>(a: *const T, b: *const T) -> bool {
    a == b
}

impl<'b, T> PartialEq for Ptr<'b, T>
{
    /// Ptr compares by pointer equality, i.e if they point to the same value
    fn eq(&self, other: &Ptr<'b, T>) -> bool {
        ptr_eq(self.0, other.0)
    }
}

impl<'b, T> PartialOrd for Ptr<'b, T>
{
    fn partial_cmp(&self, other: &Ptr<'b, T>) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<'b, T> Ord for Ptr<'b, T>
{
    /// Ptr is ordered by pointer value, i.e. an arbitrary but stable and total order.
    fn cmp(&self, other: &Ptr<'b, T>) -> Ordering {
        let a = self.0 as *const _;
        let b = other.0 as *const _;
        a.cmp(&b)
    }
}

impl<'b, T> Deref for Ptr<'b, T> {
    type Target = T;
    fn deref(&self) -> &T {
        self.0
    }
}

impl<'b, T> Eq for Ptr<'b, T> {}

impl<'b, T> Hash for Ptr<'b, T>
{
    fn hash<H: hash::Hasher>(&self, st: &mut H)
    {
        let ptr = (self.0) as *const T;
        ptr.hash(st)
    }
}

impl<'b, T: fmt::Debug> fmt::Debug for Ptr<'b, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl<'a, N, E: 'a, Ty> IntoNodeIdentifiers for &'a GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    type NodeIdentifiers = NodeIdentifiers<'a, N, E, Ty>;

    fn node_identifiers(self) -> Self::NodeIdentifiers {
        NodeIdentifiers {
            iter: self.nodes.iter(),
            ty: self.ty,
            edge_ty: PhantomData,
        }
    }
}

impl<N, E, Ty> NodeCount for GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    fn node_count(&self) -> usize {
        (*self).node_count()
    }
}

pub struct NodeIdentifiers<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
    iter: OrderMapIter<'a, N, Vec<(N, CompactDirection)>>,
    ty: PhantomData<Ty>,
    edge_ty: PhantomData<E>,
}

impl<'a, N, E, Ty> Iterator for NodeIdentifiers<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    type Item = N;
    fn next(&mut self) -> Option<Self::Item>
    {
        self.iter.next().map(|(&n, _)| n)
    }
}

impl<'a, N, E, Ty> IntoNodeReferences for &'a GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    type NodeRef = (N, &'a N);
    type NodeReferences = NodeReferences<'a, N, E, Ty>;
    fn node_references(self) -> Self::NodeReferences {
        NodeReferences {
            iter: self.nodes.iter(),
            ty: self.ty,
            edge_ty: PhantomData,
        }
    }
}

pub struct NodeReferences<'a, N, E: 'a, Ty> where N: 'a + NodeTrait {
    iter: OrderMapIter<'a, N, Vec<(N, CompactDirection)>>,
    ty: PhantomData<Ty>,
    edge_ty: PhantomData<E>,
}

impl<'a, N, E, Ty> Iterator for NodeReferences<'a, N, E, Ty>
    where N: 'a + NodeTrait, E: 'a,
          Ty: EdgeType,
{
    type Item = (N, &'a N);
    fn next(&mut self) -> Option<Self::Item>
    {
        self.iter.next().map(|(n, _)| (*n, n))
    }
}

impl<N, E, Ty> NodeIndexable for GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
    fn node_bound(&self) -> usize { self.node_count() }
    fn to_index(&self, ix: Self::NodeId) -> usize {
        let (i, _, _) = self.nodes.get_full(&ix).unwrap();
        i
    }
    fn from_index(&self, ix: usize) -> Self::NodeId {
        let (&key, _) = self.nodes.get_index(ix).unwrap();
        key
    }
}

impl<N, E, Ty> NodeCompactIndexable for GraphMap<N, E, Ty>
    where N: NodeTrait,
          Ty: EdgeType,
{
}