1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195


use visit::IntoNeighbors;
use visit::{VisitMap, Visitable};

/// Strictly monotonically increasing event time for a depth first search.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Ord, Default)]
pub struct Time(pub usize);

/// A depth first search (DFS) visitor event.
#[derive(Copy, Clone, Debug)]
pub enum DfsEvent<N> {
    Discover(N, Time),
    /// An edge of the tree formed by the traversal.
    TreeEdge(N, N),
    /// An edge to an already visited node.
    BackEdge(N, N),
    /// A cross or forward edge.
    ///
    /// For an edge *(u, v)*, if the discover time of *v* is greater than *u*,
    /// then it is a forward edge, else a cross edge.
    CrossForwardEdge(N, N),
    Finish(N, Time),
}

/// Return if the expression is a break value.
macro_rules! try_control {
    ($e:expr) => {
        match $e {
            x => if x.should_break() {
                return x;
            }
        }
    }
}

/// Control flow for callbacks.
///
/// `Break` can carry a value.
#[derive(Copy, Clone, Debug)]
pub enum Control<B> {
    Continue,
    Break(B),
}

impl<B> Control<B> {
    pub fn breaking() -> Control<()> { Control::Break(()) }
    /// Get the value in `Control::Break(_)`, if present.
    pub fn break_value(self) -> Option<B> {
        match self {
            Control::Continue => None,
            Control::Break(b) => Some(b),
        }
    }
}

/// Control flow for callbacks.
///
/// The empty return value `()` is equivalent to continue.
pub trait ControlFlow {
    fn continuing() -> Self;
    fn should_break(&self) -> bool;
}

impl ControlFlow for () {
    fn continuing() { }
    #[inline]
    fn should_break(&self) -> bool { false }
}

impl<B> ControlFlow for Control<B> {
    fn continuing() -> Self { Control::Continue }
    fn should_break(&self) -> bool {
        if let Control::Break(_) = *self { true } else { false }
    }
}

impl<E> ControlFlow for Result<(), E> {
    fn continuing() -> Self { Ok(()) }
    fn should_break(&self) -> bool {
        if let Err(_) = *self { true } else { false }
    }
}

/// The default is `Continue`.
impl<B> Default for Control<B> {
    fn default() -> Self { Control::Continue }
}

/// A recursive depth first search.
///
/// Starting points are the nodes in the iterator `starts` (specify just one
/// start vertex *x* by using `Some(x)`).
///
/// The traversal emits discovery and finish events for each reachable vertex,
/// and edge classification of each reachable edge. `visitor` is called for each
/// event, see [`DfsEvent`][de] for possible values.
///
/// If the return value of the visitor is simply `()`, the visit runs until it
/// is finished. If the return value is a `Control<B>`, it can be used to
/// break the visit early, and the last control value is returned by the
/// function.
///
/// [de]: enum.DfsEvent.html
///
/// # Example
///
/// Find a path from vertex 0 to 5, and exit the visit as soon as we reach
/// the goal vertex.
///
/// ```
/// use petgraph::prelude::*;
/// use petgraph::graph::node_index as n;
/// use petgraph::visit::depth_first_search;
/// use petgraph::visit::{DfsEvent, Control};
///
/// let gr: Graph<(), ()> = Graph::from_edges(&[
///     (0, 1), (0, 2), (0, 3),
///     (1, 3),
///     (2, 3), (2, 4),
///     (4, 0), (4, 5),
/// ]);
///
/// // record each predecessor, mapping node → node
/// let mut predecessor = vec![NodeIndex::end(); gr.node_count()];
/// let start = n(0);
/// let goal = n(5);
/// depth_first_search(&gr, Some(start), |event| {
///     if let DfsEvent::TreeEdge(u, v) = event {
///         predecessor[v.index()] = u;
///         if v == goal {
///             return Control::Break(v);
///         }
///     }
///     Control::Continue
/// });
///
/// let mut next = goal;
/// let mut path = vec![next];
/// while next != start {
///     let pred = predecessor[next.index()];
///     path.push(pred);
///     next = pred;
/// }
/// path.reverse();
/// assert_eq!(&path, &[n(0), n(2), n(4), n(5)]);
/// ```
pub fn depth_first_search<G, I, F, C>(graph: G, starts: I, mut visitor: F) -> C
    where G: IntoNeighbors + Visitable,
          I: IntoIterator<Item=G::NodeId>,
          F: FnMut(DfsEvent<G::NodeId>) -> C,
          C: ControlFlow,
{
    let time = &mut Time(0);
    let discovered = &mut graph.visit_map();
    let finished = &mut graph.visit_map();

    for start in starts {
        try_control!(dfs_visitor(graph, start, &mut visitor, discovered, finished, time));
    }
    C::continuing()
}

fn dfs_visitor<G, F, C>(graph: G, u: G::NodeId, visitor: &mut F,
                     discovered: &mut G::Map, finished: &mut G::Map,
                     time: &mut Time) -> C
    where G: IntoNeighbors + Visitable,
          F: FnMut(DfsEvent<G::NodeId>) -> C,
          C: ControlFlow,
{
    if !discovered.visit(u) {
        return C::continuing();
    }
    try_control!(visitor(DfsEvent::Discover(u, time_post_inc(time))));
    for v in graph.neighbors(u) {
        if !discovered.is_visited(&v) {
            try_control!(visitor(DfsEvent::TreeEdge(u, v)));
            try_control!(dfs_visitor(graph, v, visitor, discovered, finished, time));
        } else if !finished.is_visited(&v) {
            try_control!(visitor(DfsEvent::BackEdge(u, v)));
        } else {
            try_control!(visitor(DfsEvent::CrossForwardEdge(u, v)));
        }
    }
    let first_finish = finished.visit(u);
    debug_assert!(first_finish);
    try_control!(visitor(DfsEvent::Finish(u, time_post_inc(time))));
    C::continuing()
}

fn time_post_inc(x: &mut Time) -> Time {
    let v = *x;
    x.0 += 1;
    v
}